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Abstract

This paper is concerned with characterization and stability assessment of two-phase spherically symmetric deformations
that can be supported by a nonlinear elastic isotropic material. We study general properties of equilibrium two-phase
spherically symmetric deformations. Then we specialize to phase transformations of a solid sphere that is subjected to
an all-round tension/pressure. Two material models are used to demonstrate a variety of transformation behaviours
and some common features. For both materials we construct phase transition zones (PTZs) formed in the space of prin-
cipal stretches by those which can exist adjacently to an equilibrium interface. Then we demonstrate how the PTZ can be
used for the prediction of the number of two-phase spherically symmetric solutions and study how the deformation field
associated with each solution is related to the PTZ. We show that even in the simplest case of one interface the solution is
not unique: two equilibrium two-phase solutions as well as one uniform one-phase solution are found under the same
boundary conditions. For the three solutions we construct their load-deformation diagrams and compare the associated
total energies. The stability of the two-phase states with respect to radial and small-wavelength perturbations is also exam-
ined. We observe how unstable solutions are related with the PTZ.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

If phase transformations take place in a deformable body, the interface between two different phases can be
viewed as a singular surface across which the displacement is continuous but the deformation gradient suffers a
discontinuity. Interfaces of this kind are called coherent interfaces and appear, for example, in martensite
transformations. In contrast to deformations in a joint body where the interface between two materials is
fixed, an additional jump condition (known as the Maxwell relation) needs to be added to conventional dis-
placement and traction continuity conditions (see Grinfeld, 1980; James, 1981; Truskinovsky, 1982; Gurtin,
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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1983; Abeyaratne, 1983; Kaganova and Roitburd, 1988; Fosdick and Hertog, 1989). This additional jump
condition evolved from the pioneering works by Eshelby (1951, 1956, 1975), Ericksen (1975) and Knowles
(1979). It acts as a restriction on the location and orientation of the interface.

Mathematical modelling of phase transformations consists of finding the right strain-energy function for a
given material so that the theory can predict what will happen in various loading and geometrical conditions.
The choice of the right strain-energy function is usually guided by results from a number of experiments such
as uniaxial and biaxial tensions or twisting. It is now well-known that a necessary condition for an elastic body
to support two-phase deformations is that its strain-energy function loses strong ellipticity at a non-trivial set
of deformation gradients (see, e.g., Knowles and Sternberg, 1978). However, knowledge of such a necessary
condition is far from enough in the mathematical modelling. A possible strategy is to study various two-phase
deformations for as many strain-energy functions as possible so that a repertoire of basic transformation
behaviours can be documented and then referenced in the construction of the strain-energy function for
any particular situation. Thus, over the past three decades various two-phase deformations and boundary-
value problems for elastic bodies capable of multi-phase deformations have been studied (see, for instance,
James, 1979, 1981; Fosdick and James, 1981; Abeyaratne, 1981; Fosdick and MacSithigh, 1983; Eremeyev
and Zubov, 1991; Fosdick and Zhang, 1993, 1994, 1995a,b; Abeyaratne et al., 2001), and the references
therein. In the present paper we solve the boundary value problem of a solid sphere that is subjected to an
all-round tension/pressure and consider the solution within the framework of phase transition zones (PTZs),
formed in strain space by all deformations which can exist on either side of an equilibrium interface and deter-
mined entirely by the strain energy function (see Freidin and Chiskis, 1994a).

Aspects of phase transformations in a sphere made of nonlinear elastic or elastoplastic materials have
previously been considered by Roitburd and Temkin (1986), Kaganova and Roitburd (1987), Lusk (1994),
Levitas (1997, 2000). Our study is motivated by the following considerations.

Firstly, as a problem with an unknown interface, the problem of equilibrium two-phase deformations may
have a number of solutions. Various two-phase structures can satisfy the equilibrium conditions under the
same boundary conditions. Since equilibrium conditions do not necessarily provide a global energy minimum,
some of the solutions may be metastable or unstable. The choice of the solution then needs to be made on the
basis of analysis of stability and estimates of energy changes due to phase transformations. Note that not only
are states which provide global energy minimum of interest, but locally stable states with different energies can
also be observed in physical reality.

Secondly, recent studies by Morozov et al. (1996), Morozov and Freidin (1998), and Nazyrov and Freidin
(1998) of phase transformations of an isotropic elastic sphere with a strain energy that is a piecewise quadratic
function of the linear strain tensor show that (i) a new phase area can appear and spread during the loading
either from the center of the sphere as a spherical nucleus or from the surface in the form of a spherical layer;
(ii) for both solutions the external pressure decreases on the path of transformation when the volume of the
sphere increases (strain softening); (iii) the equilibrium two-phase states, if they exist, are always energetically
preferable to the one-phase state when radial displacement is prescribed; and (iv) with respect to radial per-
turbations of the interface both two-phase configurations are stable if displacement is prescribed but unstable
if pressure is prescribed. Further examinations by Eremeyev et al. (2002, 2003, in press) have shown that a
two-phase configuration in which the phase outside of the interface has a greater shear modulus is unstable
with respect to spherically axisymmetric perturbations.

Thirdly, it has emerged from the above-mentioned studies that there might exist a connection between the
stability properties of a two-phase configuration and the strain distribution in relation to the PTZ. Given an
isotropic nonlinear elastic material, the PTZ may be constructed in the space of principal stretches. It has been
found that corresponding to the unstable solution there are triads of principal stretches in the sphere that are
inside the external PTZ boundaries, and instability was not found if the triad of principal stretches everywhere
in the sphere is outside or on the external PTZ boundary.

In the present paper we study general properties of equilibrium spherically symmetric two-phase deforma-
tions of an arbitrary nonlinear elastic isotropic material. One of our objectives is to determine whether the
results obtained in the case of small strains can be extended to finite deformations. We show the possibility
of a finite spherical nucleus in an infinite medium or infinitesimally small nucleus at the center of a finite
sphere. The deformation is spherical and axially symmetric inside and outside the nucleus, respectively, and
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the principal stretches on the two sides of the interface are determined entirely by material properties and are
obtained by solving the traction continuity condition and the Maxwell relation. The non-uniqueness of the
two-phase deformation arises from the non-uniqueness of the solution of the latter equations. From the phys-
ical point of view, various solutions correspond to various phase states of the spherical nucleus. We show that
the existence and number of solutions depend on the strain energy function and can be predicted a priori based
on the PTZ constructed.

We demonstrate that for a phase-transforming elastic sphere a new phase area can spread from the center
or from the outer surface of the sphere. We study the deformation fields in detail and show that unstable two-
phase deformations are related to the PTZ in a similar manner to the case of small strains. We also obtain the
relation between the applied pressure and the volumetric strain and show that it contains a decreasing branch
on the path of phase transformation. This strain-softening effect in a sphere is similar to what was observed
earlier in the case of small strains. Note that the existence of a decreasing branch in the average (macro) stress–
strain relation is not a specific feature only of the phase-transforming sphere. Similar behaviour was also
observed in the case of plane interfaces by Freidin (1997), Freidin and Sharipova (2003, in press), Idesman
et al. (2004), Levitas et al. (2004).

The rest of this paper is organized into four sections as follows. In the next section we write down the jump
conditions that need to be satisfied across any interface, define phase transition zones and show briefly how
they can be constructed. In Section 3 we consider spherically symmetric two-phase deformations, particularly
in the context of a solid sphere that is subjected to an all-round tension/pressure. We describe properties of
equilibrium two-phase spherically symmetric deformations and reformulate for the case some results obtained
by Sivaloganathan (1986) for cavitating equilibrium solutions. Then two material models are used to show a
variety of phase transformation behaviours and some common features. For each material we show how the
PTZ can be used to determine the two-phase deformation fields. In Section 4 we consider the stability of the
two-phase solutions obtained in Section 3 with respect to small wave-length perturbations. In the final section
we summarize our results.

2. Jump conditions and the phase transition zone (PTZ)

Let the static deformation of an elastic body be given by
x ¼ xðXÞ; ð2:1Þ

which assigns position x to the material point that occupies position X in the undeformed (reference) config-
uration. Let C be a possible interface between two different phases in the undeformed configuration. Then the
deformation must satisfy the jump conditions
sFt ¼ f �m; sStm ¼ 0; sW t ¼ f � S�m ð2:2Þ

which correspond to displacement continuity, traction continuity, and equilibrium of the interface (the
Maxwell relation), respectively, where F is the deformation gradient, f = sFbm, W is the strain energy per unit
reference volume, S is the first Piola–Kirchhoff stress tensor, the brackets sÆb = (Æ)+ � (Æ)� denote the jump of a
function across C, super- or subscripts ‘‘�’’ and ‘‘+’’ signify evaluation at the interface as it is approached
from the two sides, and m is the unit normal to C pointing from the ‘‘+’’ phase into the ‘‘�’’ phase. The stress
tensor S is related to the Cauchy stress tensor T by T = J�1SFT, J = detF, and we have S = oW/oF (Sij =
oW/oFij).

We may use (2.2)1 to rewrite (2.2)2,3 as
ðSðF� þ f �mÞ � SðF�ÞÞm ¼ 0;

W ðF� þ f �mÞ � W ðF�Þ ¼ f � SðF�Þm.
Given an F�, the above equations can be considered as a system of four equations for five unknowns: the
amplitude f 5 0 and the unit normal m. The phase transition zone (PTZ) is defined as the union of all those
F� for which the above system of equations have a real solution for f and m (see Freidin and Chiskis, 1994a).
For isotropic materials, the PTZ can also be defined in terms of the three principal stretches or the three prin-
cipal invariants of the Cauchy–Green deformation tensors.
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A general procedure for constructing the PTZ for arbitrary isotropic nonlinear elastic materials has been
developed earlier (see Freidin and Chiskis, 1994a,b; Freidin, 2000; Freidin et al., 2002). Here we summarize
the main results which will be used in later sections.

When referred to the current configuration, the jump conditions (2.2) become
Fþ ¼ Iþ 1

J�
c� n

� �
F�; sTtn ¼ 0; sW t ¼ c � T�n; ð2:3Þ
where n is the unit normal to the interface in the current configuration, and c ¼ J�f= j FT
�n j which is contin-

uous across the interface. We decompose c such that
c ¼ sJtnþ h; h , Pc; ð2:4Þ

where P = I � n � n is the projector, and in obtaining the first term we have used (2.3)1. It then follows from
(2.3)1 and (2.4) that
Bþ ¼ B� þ
1

J�
ðc� B�nþ B�n� cÞ þ G1c� c; ð2:5Þ

B�1
þ ¼ B�1

� �
1

Jþ
ðn� B�1

� cþ B�1
� c� nÞ þ 1

J 2
þ
ðc � B�1

� cÞn� n; ð2:6Þ
where B = FFT is the left Cauchy–Green tensor. The G1 in (2.5), and G�1 which appears in our subsequent
analysis, are the two orientation invariants defined by
G1 ¼
N 1

J 2
; G�1 ¼

I2

J 2
� N�1; N 1 ¼ n � Bn; N�1 ¼ n � B�1n;
where I1, I2 are two of the three principal invariants of B related to the three principal stretches k1, k2, k3 by
I1 ¼ k2
1 þ k2

2 þ k2
3; I2 ¼ k2

1k
2
2 þ k2

1k
2
3 þ k2

2k
2
3.
It can be shown that G1 and G�1 are both continuous across the interface (see, for instance, Freidin and
Chiskis (1994a) or Freidin et al. (2002)).

When referred to the principal axes of stretch, the components of n can be determined in terms of G1 and
G�1 by solving the system of equations
X3

i¼1

n2
i ¼ 1;

X3

i¼1

n2
i k

2
i ¼ J 2G1;

X3

i¼1

n2
i k
�2
i ¼

I2

J 2
� G�1; ð2:7Þ
which is linear in n2
1; n2

2 and n2
3. Since n2

1; n2
2 and n2

3 must be non-negative, the domain of admissible pairs of
(G1,G�1) is a triangle G in the (G1,G�1)- plane; see Fig. 1. The coordinates of the three vertexes A1, A2 and A3

are given by
ðk�2
2 k�2

3 ; k�2
2 þ k�2

3 Þ; ðk�2
1 k�2

3 ; k�2
1 þ k�2

3 Þ; ðk�2
2 k�2

1 ; k�2
2 þ k�2

1 Þ;

respectively. For an isotropic material, we have
W ¼ W ðI1; I2; JÞ; T ¼ l0Iþ l1Bþ l�1B�1; ð2:8Þ

where
l0 ¼ W 3 þ 2J�1I2W 2; l1 ¼ 2J�1W 1; l�1 ¼ �2JW 2; ð2:9Þ

and W1 = oW/oI1, W2 = oW/oI2, W3 = oW/oJ. On substituting (2.4) into (2.5), (2.6) and making use of the
equality I2 = J2 trB�1, we obtain the following relations between the strain and orientation invariants
sI1t ¼ G1sJ 2tþ 2h � t�1 þ G1h � h; ð2:10Þ
sI2t ¼ G�1sJ 2t� 2h � t��1 þ h � B�1h; ð2:11Þ
where
t1 ¼ J�1PBn; t�1 ¼ JPB�1n. ð2:12Þ



Fig. 1. The domain of admissible values of (G1,G�1). Lines ab, cd and pq: typical solutions of (2.19).
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Projecting the traction continuity condition (2.3)2 onto the normal direction and taking into account (2.8),
(2.9) we obtain
�sW 3t ¼ 2sJW 1tG1 þ 2sJW 2tG�1. ð2:13Þ

The Maxwell relation (2.3)3 takes the form
sW t ¼ snsJtþ 2W �
1 h � t�1 � 2W �

2 h � t��1; ð2:14Þ

where sn is the normal component of the traction given by
sn ¼ n � Tn ¼ 2JðG1W 1 þ G�1W 2Þ þ W 3 ð2:15Þ

and can be evaluated on either side of the interface.

When projected onto the tangent direction, (2.3)2 gives PsTbn = 0 which yields an equation for h:
Aþh ¼ �sW 1tt�1 þ sW 2tt��1; Aþ , G1W þ
1 Iþ W þ

2 PB�1
� . ð2:16Þ
We assume that the strong ellipticity condition, and hence the Baker–Ericksen inequalities
W 1 þ k2

kW 2 > 0 ðk ¼ 1; 2; 3Þ, hold on both sides of the interface. Then the inverse of A+ exists (see Freidin,
2000) and (2.16)1 can be solved to find an expression for h. Following Freidin and Chiskis (1994a), we write
h ¼ at�1 þ bt��1; ð2:17Þ

where the coefficients a and b are determined by the following matrix equation which results from substituting
(2.17) into (2.16)1 and then equating the coefficients of t�1 and t��1:
G1W þ
1 W þ

2

�G1W þ
2 G1W þ

1 þ G�1W þ
2

� �
a

b

� �
¼
�sW 1t

sW 2t

� �
. ð2:18Þ
Suppose that I�1 ; I�2 ; J� are prescribed. Then Eqs. (2.10), (2.11), (2.13), (2.14) together with the representation
(2.17), (2.18) can be reduced to a system of four equations for five unknowns: the two orientation invariants
G1, G�1, and the three deformation invariants Iþ1 ; Iþ2 ; Jþ.

Suppose we solve three of the equations to express Iþ1 ; Iþ2 ; Jþ in terms of G1 and G�1. Then the fourth
equation takes the form
WðG1;G�1jI�1 ; I�2 ; J�Þ ¼ 0; ð2:19Þ

which describes a curve in the (G1,G�1)-plane. The phase transition zone in the (k1,k2,k3)–space is formed by
all triads of principal stretches at which the intersection between this curve and the triangular region in Fig. 1
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is non-empty. The intersection may be a line segment, in which case we have a one-parameter family of solu-
tions for the normal to the interface.

Since (G1,G�1) can only take values in G, the PTZ is given by the following inequalities which can be used
to construct the PTZ:
WminðI1; I2; JÞ 6 0 6 WmaxðI1; I2; JÞ; ð2:20Þ

where
WminðI1; I2; JÞ ¼ min
G1;G�12G

WðG1;G�1jI1; I2; JÞ;

WmaxðI1; I2; JÞ ¼ max
G1;G�12G

WðG1;G�1jI1; I2; JÞ;
and we have omitted the superscripts ‘‘�’’ since the formulas are also valid for the ‘‘+’’ phase.

3. Spherically symmetric two-phase deformations

We now specialize to the case of a solid sphere that is subjected to an all-round tension or pressure. Without
loss of generality, we may assume that the sphere has unit radius in its undeformed configuration. Suppose
further that a spherical interface R = R* exists and divides the sphere into regions
V in : R 2 ½0;R�� and V ex : R 2 ðR�; 1�.

We look for a solution whereby the deformations in Vin and Vex are spherical and spherically symmetric,
respectively. Thus, for R 2 Vin the deformation is uniform and we have
B � B� ¼ k2
0I; ð3:1Þ
where k0 > 0 is a constant.
Assume that the material is strongly elliptic inside the phases including both sides of the interface. Then,

since t1 = t�1 = 0, from (2.17), (2.5) and (3.1) it follows that h = 0, and B+ must necessarily take the form
Bþ ¼ k�21 e1 � e1 þ k2
0ðI� e1 � e1Þ; ð3:2Þ
where e1 is the base vector in the radial direction, and k�1 > 0 is a constant which, together with k0, is to be
determined by
o ~W
ok1

����
k1¼k2¼k3¼k0

¼ o ~W
ok1

����
k1¼k�1; k2¼k3¼k0

¼
~W þ � ~W �

k�1 � k0

; ð3:3Þ
where ~W ðk1; k2; k3Þ ¼ W ðI1; I2; JÞ. The two equations above correspond to traction continuity and the
Maxwell relation, respectively.

For R 2 Vex we may write
r ¼ rðRÞ; h ¼ H; / ¼ U; ð3:4Þ

where R, H, U and r, h, / are spherical polar coordinates of material particles in the reference and current
configurations, respectively. Corresponding to (3.4) the F and B are given by
F ¼ k1e1 � e1 þ kðI� e1 � e1Þ; B ¼ k2
1e1 � e1 þ k2ðI� e1 � e1Þ; ð3:5Þ
and the principal stretches are given by
k1 � kR ¼ r0; k � kU ¼ kH ¼
r
R
; ð3:6Þ
where a prime denotes differentiation with respect to R.
The strain invariants are then given by
I1 ¼ r02 þ 2
r2

R2
; I2 ¼

r2

R2
2r02 þ r2

R2

� �
; J ¼ r0

r2

R2
; ð3:7Þ
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and the Cauchy stress tensor is
T ¼ s1e1 � e1 þ sðI� e1 � e1Þ; ð3:8Þ
where
s1 ¼ k�2 o ~W
ok1

����
k2¼k3¼k

; s ¼ ðk1kÞ�1 o ~W
ok2

����
k2¼k3¼k

. ð3:9Þ
The equilibrium equations in spherical polar coordinates reduce to a single equation
s01 þ
2r0

r
ðs1 � sÞ ¼ 0. ð3:10Þ
For the current deformation where k2 = k3 � k, we define a reduced strain energy function �W through
�W ðk1; kÞ ¼ ~W ðk1; k; kÞ. It then follows that
o ~W
ok1

¼ o �W
ok1

, �W 1;
o ~W
ok2

¼ o ~W
ok3

¼ 1

2

o �W
ok
,

1

2
�W 2;
and by (3.9), the equilibrium equation (3.10) reduces to
R �W 11r00 þ �W 12 r0 � r
R

� �
þ 2 �W 1 � �W 2 ¼ 0; ð3:11Þ
where �W 11 ¼ o
2 �W =ok2

1, �W 12 ¼ o
2 �W =ok1ok.

The second-order differential equation (3.11) is to be solved in the spherical shell R 2 [(R*,1] for
r 2 C2ððR�; 1�Þ : r0ðRÞ > 0; R� 2 ð0; 1Þ; ð3:12Þ

subjected to three conditions, namely the interfacial conditions
rðR�Þ ¼ R�k0; r0ðR�Þ ¼ k�1 ð3:13Þ

and the prescribed displacement condition
rð1Þ ¼ r0; ð3:14Þ

where r0 is a constant which can be related to the applied pressure at R = 1. Note that (3.12) and (3.13)1 assure
r(R) > 0.

An equilibrium two-phase state of the sphere exists only for those values of r0 at which the solution of (3.11)
satisfies (3.12) and the two conditions (3.13) at a value of R* in the interval (0,1). Suppose that k0 and k�1 are
known and the solution r(R) exists for all R* 2 (0,1) and as R*! 0. Then, given an interface R* 2 (0, 1), one
can integrate (3.11) from R = R* to R = 1 to obtain the required value of r0 through r0 = r(1). As a result, the
dependence of the interface radius R* on the outer radius r0 can be constructed.

If (3.3) has a number of solutions then every pair of positive numbers k0; k�1 produces an equilibrium spher-
ically symmetric two-phase deformation.

Given a strain energy function, the solution r(R), if it exists, and the dependence R*(r0) can be obtained
numerically. Examples in relation to phase transition zone for different nonlinear elastic materials are given
in later subsections. Now we describe some general features of equilibrium spherically symmetric two-phase
deformations.

3.1. Properties of the deformations at R > R*

We first formulate some constitutive hypotheses. A necessary condition for the existence of spherically sym-
metric two-phase deformations is solvability of (3.3), i.e. ~W must be such that at least one set of positive k0 and
k�1 exists.
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We assume that W is C3, and strong ellipticity holds inside each phase. It then follows that
�W 11 > 0;
k �W 2 � 2k1

�W 1

k� k1

> 0; ð3:15Þ

�W 12 þ
2 �W 1 � �W 2

k1 � k
þ ð �W 11

�W 22Þ1=2
> 0 ð3:16Þ
at k1 = r 0(R), k = r(R)/R, see Wang and Aron (1996). Note that since a material must loss ellipticity at some
deformations, we cannot assume that (3.15) and (3.16) are satisfied at all principal stretches.

We observe that the second-order differential equation (3.11) may be rewritten as a first-order differential
equation for k1 = k1(k):
�W 11

dk1

dk
þ �W 12 þ

2 �W 1 � �W 2

k1 � k
¼ 0; ð3:17Þ
We make the slightly stronger assumption
�W 12 þ
2 �W 1 � �W 2

k1 � k
> 0 ð3:18Þ
for each phase which, although in general not guaranteed by the strong ellipticity, is satisfied by the material
models to be considered later.

By (3.13), the initial condition for (3.17) is
k1ðk0Þ ¼ k�1. ð3:19Þ

Both the first-order differential equation (3.17) and the initial condition (3.19) are independent of R*. Thus, the
solutions for different values of R* should be parts of a single curve that starts from the point ðk0; k

�
1Þ on the k,

k1-plane. This fact is borne out by our numerical calculations to be presented later.
After the solution k1 = k1(k) for (3.17) and (3.19) has been found, we may integrate the equation

dr/dR = k1(r/R) subjected to the initial condition r(R*) = k0R* to obtain r(R) in an implicit form:
Z r=R

k0

dk
k1ðkÞ � k

¼ ln
R
R�
; R P R�. ð3:20Þ
We are now in a position to establish a number of properties concerning the solution of (3.11) including the
convergence of the integral in (3.20) at finite R/R* and the behaviour of the solution as R/R*!1. First, we
observe that if a solution satisfying (3.12) exists and k1 = k holds for some value of R greater than R*, say R̂,
then it must hold for all R greater than R* (Sivaloganathan, 1986). This is because if we were to integrate (3.11)
subjected to the initial conditions rðR̂Þ ¼ kðR̂ÞR̂; r0ðR̂Þ ¼ kðR̂Þ then k1ðRÞ � kðRÞ � kðR̂Þ8R > R� should neces-
sarily be the unique solution, since (3.15)1 holds. It then follows from the fact k0 6¼ k�1 and
dk
dR
¼ 1

R
ðk1 � kÞ; ð3:21Þ

ds1

dR
¼ 1

Rk3
ðk �W 2 � 2k1

�W 1Þ ð3:22Þ
(obtained by differentiating k = r/R and (3.9)1, and making use of (3.11)) that the sign of dk/dR and ds1/dR

must be definite for R 2 (R*,1]. This in turn leads to the following properties of equilibrium spherically sym-
metric two-phase deformations (cf. Sivaloganathan, 1986).

Proposition 3.1. If r(R) is a solution of (3.11) satisfying (3.12), (3.13) and (3.15)1, then k(R) is a strictly
monotone function on (R*, 1]:
dk=dR < 0; k1ðRÞ < kðRÞ if k�1 < k0; ð3:23Þ
dk=dR > 0; k1ðRÞ > kðRÞ if k�1 > k0. ð3:24Þ
If, in addition, (3.15) holds, then the radial Cauchy stress s1 ¼ k�2 �W 1 is also a strictly monotone function on

(R*, 1]:
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ds1=dR > 0; if k�1 < k0;

ds1=dR < 0; if k�1 > k0.
If a solution satisfies (3.12), (3.13), (3.15)1 and (3.18) then dk1/dk < 0, k1(R) is a strictly monotone function on

(R*, 1], and
dk1=dR > 0; k�1 < k1 < k < k0 if k�1 < k0; ð3:25Þ
dk1=dR < 0; k�1 > k1 > k > k0 if k�1 < k0. ð3:26Þ
The proof immediately follows from (3.21), (3.22), (3.15)2, (3.17) and (3.18).

Proposition 3.2. Let r(R) be a solution of (3.11) satisfying (3.12), (3.13). Let (3.15)1 and (3.18) hold on a

maximal interval (R*,Rmax) of existence of the solution. Then Rmax is infinite, i.e. r is extendable to r 2 C2(R*,1)

such that (3.23), (3.24) and (3.25), (3.26) hold for R 2 (R*,1), and
9kc : lim
R=R�!1

k ¼ lim
R=R�!1

k1 ¼ kc; ð3:27Þ

k�1 < k1 < kc < k < k0 or k�1 > k1 > kc > k > k0 for R > R�. ð3:28Þ
Proof. Following Sivaloganathan (1986), we note that by the continuation principle r may be extended to a
maximal interval of existence (R*,Rmax), Rmax > 1 such that (3.23), (3.24) and (3.25), (3.26) hold on (R*,Rmax)
and then show that Rmax cannot be finite. If Rmax were finite then the following cases could correspond to
degenerations of the extended solution (3.12) as R! Rmax <1: (i) r(R)!1, (ii) r 0(R)!1, (iii)
r(R)! 0, (iv) r 0(R)! 0. From (3.23), (3.24) it follows that (i) and (ii) are impossible if k�1 < k0 whereas (iii)
and (iv) are impossible if k�1 > k0.

Now prove impossibility of (iii) and (iv) when k�1 < k0. By (3.23) and (3.25), k(R) decreases monotonically,
whereas k1(R) increases monotonically as R increases, and kðRÞ < k0; k1ðRÞ > k�1 > 0. Then the inequality
k1(R) � k(R) < 0 fails at some R̂ 2 ðR�;RmaxÞ if k(R)! 0 as R! Rmax. Thus, (iii) is a contradiction if
Rmax <1, whereas (iv) contradicts the monotone increasing property of k1(R). Impossibility of (i) and (ii)
when k�1 > k0 is proved analogously.

From the fact that (3.25), (3.26) hold we then conclude that the integrand in (3.20) is continuous for k 2
[r/R,k0] and the integral converges at any finite R/R* which corresponds to some value of r/R. By (3.20),
r(R)/R is a bounded and monotone function of R/R*; then
9kc 2 ðk�1; k0Þ or ðk0; k
�
1Þ : r=R ¼ kðR=R�Þ ! kc as R=R� ! 1.
The limits on the integral in (3.20) are both finite. As R/R*!1, the right hand side of (3.20) tends to infinity
and so we must necessarily have k1(k)! k! kc. Finally we obtain (3.28). h

Eq. (3.20) determines a curve on the (R/R*, r/R)-plane (Fig. 2). The curve starts from the point (1,k0) and,
as established above, asymptotically approaches the line r/R = kc as R/R*!1. The value kc corresponds to
crossing of the curve k1 = k1(k) obtained from (3.17) and (3.19) with the hydrostatic line k1 = k, i.e. k1(kc) = kc.
Obviously, kc is a material parameter as well as k0 and k�1. For every pair k0; k�1 satisfying (3.3) there is a cor-
responding value of kc.

The solutions of (3.11), (3.13) for various R* correspond to various segments on the single curve (3.20). Seg-
ments DD2, DD3, DD4 in Fig. 2a (for the case k0 > k�1) and BB3, BB2, BB1 in Fig. 2b (for the case k0 < k�1)
represent the solutions for three typical values of R*.

Since the limit R/R*!1 can be obtained by either R!1 or R*! 0, the hydrostatic limiting state
k1 = k = kc may correspond to either a finite R* and infinite R (a finite nucleus forming in an infinite medium
under an all-round stretching kc) or a vanishingly small R* and finite R (an infinitesimally small new phase
forming at the center of a finite sphere).

Note that, on the one hand, k1 = k identically satisfies (3.11) for all k but only k1 = k = kc is consistent with
the initial conditions (3.13). On the other hand, as we move along the hydrostatic axis k1 = k, a phase
transformation first becomes possible in the center when k = kc. The topology of solution changes: a uniform



(a) (b)

Fig. 2. Equilibrium spherically symmetric two-phase deformations: (a) k0 > k�1, (b) k0 < k�1.
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one-phase state may bifurcate into an equilibrium two-phase state for which one of the phases is localized at
the central point.

In the case of a unit sphere the dependence of R* on r0 = r(1) is given by
R� ¼ exp

Z r0

k0

dk
k� k1ðkÞ

� �
; R� 2 ð0; 1Þ. ð3:29Þ
By (3.29) and (3.28), the interface radius is a monotone increasing function of r0 if k0 > k�1 or a monotone
decreasing function if k0 < k�1.

If there are reasons to think that both phases may be localized at the center then one may expect that at
least two values of kc exist and, thus, at least two pairs of k0; k�1 and two two-phase equilibrium solutions
are possible. One kc corresponds to the new phase nucleation in the center. Another kc corresponds to the state
when the parent phase is localized at the center surrounded by a new phase material. For one of the solutions
k0 > k�1. For the other one k0 < k�1 (see examples in the next subsections).

Further we will see that k0 corresponds to the bifurcation of a sphere from a one-phase state into a two-
phase state with an infinitesimally thin layer of new phase forming at the outer surface of the sphere.

The above semi-inverse procedure may be used to find the displacement on the boundary in the case of a
spherically symmetric two-phase deformation in a body of arbitrary shape. One only needs to integrate (3.11)
along the radius from the interface point until the outer boundary point R = R0(H,U) and compute
r0 = r(R0,H,U). This includes the case of a sphere where a new spherical phase initiates from a point different
from the center. In this case displacements will be different at various points of the outer boundary. Displace-
ments on the boundary R = R0(H,U) of a possibly non-spherical body and the interface radius are related by
R� ¼ R0 exp

Z r0ðR0;H;UÞ=R0

k0

dk
k� k1ðkÞ

� �
; R� 2 ð0;R0Þ.
To conclude this subsection, we note that the solution k1 = k1(k) of (3.17), (3.19) is found irrespectively of the
relations between k, k1 and r given by (3.6). The curve of the solution k1 = k1(k) may cross the line k1 = k and
contain points in which k1 > k as well as k1 < k, but only those parts of the curve k1 against k which satisfy
kinematic compatibility restrictions (3.23), (3.24) may correspond to the solution r(R). Obviously, these parts
cannot spread beyond the point k = k1 = kc.

3.2. The Hadamard material

We now specialize to the Hadamard material for which W takes the form
W ¼ c
2

I1 þ
d
2

I2 þ /ðJÞ; c; d P 0; cþ d 6¼ 0. ð3:30Þ
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Eq. (3.11) then takes the form
R cþ 2d
r
R

� �2

þ €/
r
R

� �4
� �

r00 þ 2 d þ €/
r
R

� �2
� �

r
R

� �
r02 þ 2 c� €/

r
R

� �4
� �

r0 � 2r
R

cþ d
r
R

� �2
� �

¼ 0;

ð3:31Þ

where a dot denotes differentiation with respect to J and use has been made of (3.6).

Two-phase deformations of the Hadamard material has been studied by Freidin and Chiskis (1994a) and
Freidin et al. (2002) in the context of PTZ construction and by Fu and Freidin (2004) in the context of stability
analysis of piecewise-homogeneous deformations. Here we summarize some of their results and specialize to
spherically symmetric deformations.

Since now sW1b = sW2b = 0, it follows from (2.17) and (2.18) that
h ¼ 0; c ¼ sJtn. ð3:32Þ

The traction continuity condition (2.13) and the Maxwell relation (2.14) then take the form
cG1 þ dG�1 ¼ UðJþ; J�Þ;
/þ � /�
Jþ � J�

¼ 1

2
ð _/þ þ _/�Þ; ð3:33Þ
where
UðJþ; J�Þ , �
_/þ � _/�
Jþ � J�

.

For the special problem under consideration G1 ¼ 1=k4
0; G�1 ¼ 2=k2

0; Jþ � J� ¼ k2
0ðk
�
1 � k0Þ, and these two

conditions reduce to
c

k2
0

þ 2d ¼ �
_/þ � _/�
k�1 � k0

;
/þ � /�

k2
0ðk
�
1 � k0Þ

¼ 1

2
ð _/þ þ _/�Þ; ð3:34Þ
where /� ¼ /ðk3
0Þ; /þ ¼ /ðk2

0k
�
1Þ. Eqs. (3.34)1,2 are two algebraic equations for the two unknown positive

constants k0 and k�1. The equations, and hence the spherically symmetric problem under consideration, may
have a number of solutions. We now show that the number of solutions and other qualitative features can
be deduced a priori with the aid of the corresponding PTZ.

Following Freidin and Chiskis (1994a), we may first solve (3.33)2 to obtain J+ = J+(J�). Then (3.33)1

reduces to
cG1 þ dG�1 ¼ uðJ�Þ; where uðJ�Þ , UðJþðJ�Þ; J�Þ. ð3:35Þ

The PTZ in the space of principal stretches is then formed by all those triads of stretches for which the straight
line given by (3.35) intersects the triangular region in Fig. 1. Clearly, cG1 + dG�1 attains its minimum and
maximum at the vertexes of the triangle G. If k1 < k2 < k3 then
min
G1;G�1	G

ðcG1 þ dG�1Þ ¼ hðk2; k3Þ; n ¼ e1;

max
G1;G�1	G

ðcG1 þ dG�1Þ ¼ hðk2; k1Þ; n ¼ e3;
where  !

hðki; kjÞ ¼

c

k2
i k

2
j

þ d
1

k2
i

þ 1

k2
j

.

Thus, the PTZ is bounded by the two surfaces u(J) = h(k2,k3) and u(J) = h(k2,k1). For the present problem
where k2 = k3 � k, the two surfaces reduce to two curves on the (k1,k)-plane:
uðJÞ ¼ hðk; kÞ; corresponding to n ¼ e1 ð3:36Þ

and
uðJÞ ¼ hðk; k1Þ; corresponding to n ? e1. ð3:37Þ
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The strong ellipticity conditions for the material (3.30) reduce to
hðkmid; kmaxÞ þ €/ > 0 ð3:38Þ

where kmid and kmax are intermediate and maximal stretches, respectively, see Rosakis (1990), Freidin and
Chiskis (1994a). Then with k2 = k3 � k a non-ellipticity sub-zone is described by
hðk; k1Þ þ €/ < 0 if k < k1; ð3:39Þ
hðk; kÞ þ €/ < 0 if k > k1. ð3:40Þ
We choose the function U such that the non-ellipticity sub-zone is embedded in the PTZ. Note that from (3.38)
and
~W 1 � ~W 2

k1 � k2

þ ~W 12 ¼ cþ dðk1k2 þ k2
3Þ þ k1k2k

2
3
€/
it follows that if the Hadamard material is strongly elliptic at k1, k2, k3 then the assumption (3.18) holds.
To proceed further, we now assume that /(J) takes the simple form (Freidin and Chiskis, 1994a)
/ðJÞ ¼ ðJ � J cÞ4

4
� AðJ � J cÞ2

2
þ aðJ � J cÞ; ð3:41Þ
which gives u(J) = A � (J � Jc)
2, where Jc, A and a are material constants. We note that this model does not

satisfy the condition W!1 as J! 0, and so it should be applied with caution when very small principal
stretches are involved.

The PTZ and the non-ellipticity sub-zone for the Hadamard material with / given by (3.41) at k2 = k3 � k
is shown in Fig. 3. The thin dotted line corresponds to J = Jc. The hashed area denotes the non-ellipticity sub-
zone, and the shaded area represents the interior of the PTZ. The material parameters are chosen such that (i)
the material is strongly elliptic at the interface, (ii) the stress-free state k1 = k2 = k3 = 1 is outside the PTZ, and
(iii) stress is zero and the bulk modulus is positive at k1 = k2 = k3 = 1.

The thick solid line in the main figure denotes the PTZ boundary corresponding to n = e1 and is given by
Eq. (3.36). Only k1 may suffer a jump if the PTZ is reached for example at point M or N.

The thick dotted line denotes the PTZ boundary corresponding to the normal n ? e1. If
B� ¼ k2

1e1 � e1 þ k2ðI� e1 � e1Þ and n ? e1 then the eigenvectors of B+ can be ordered such that
Bþ ¼ k2
1e1 � e1 þ k2eþ2 � eþ2 þ k2

3þeþ3 � eþ3 ; eþ3 ¼ n; eþ2 ¼ e1 ^ n.
Thus, B+ is no longer axially symmetric and cannot be presented on the kk1-plane.
It is seen that either point A or point E may correspond to the spherical deformation in the core phase of

the sphere. Thus two solutions of the form (3.1) and (3.2) are possible. One solution is given by
k0 ¼ kE; k�1 ¼ kD

1 , and the other is given by k0 = kA, k�1 ¼ kB
1 . The arrows AB and ED denote the corresponding

jumps in k1.
The first solution (namely k0 ¼ kE; k�1 ¼ kD

1 ) corresponds to a spherical nucleus of new phase forming from
the center. The point E represents the spherical deformation inside the nucleus. Such a phase transformation
first takes place in the center under all-round stretching from the undeformed state when point D1 is reached.
As discussed above, the point D1 also corresponds to an all-round stretching kD1

c at which a finite spherical
nucleus of a new phase may appear in an infinite medium. As soon as the new phase with a vanishingly small
radius first appears, the deformation in the initial phase changes discontinuously from being spherical to being
spherically symmetric. The deformation on the initial-phase side of the interface is represented by D. The line
segment DD1 shows the distribution of (k,k1) in the outer shell ‘‘made’’ of the initial phase at the moment of
the new phase nucleation.

The radius of the nucleus increases as r0 increases (Fig. 4a). The deformations on the interface remain to be
the same constants represented by the points E and D. Deformations in the outer shell change in a such way
that the point corresponding to the deformation at R = 1 moves towards point D along DD1. For example, at
some intermediate value of r0 the distribution of (k,k1) in the outer phase is represented by the segment DD2.
At another moment the distribution corresponds to the segment DD3. The transformation finishes at



Fig. 3. The PTZ on the kk1-plane for the Hadamard material with Jc = 2, d = 0.2, A = 0.8, c = 0.03, a = �0.23. ST: path of uniaxial
stretching; EDD1 and ABB4: spherically symmetric deformations.
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r0 ¼ rE
0 ¼ kE when the deformation is again spherical. The corresponding solutions on the (R/R*, r/R)-plane

are pictured in Fig. 2a.
In the unloading process from the new phase state we start from point E. A thin spherical layer of the initial

phase appears and spread into the interior of the sphere as r0 decreases.
We emphasize that in this scenario deformations throughout the sphere are outside or on the external PTZ

boundary.
Note one more feature of the equilibrium two-phase deformation. In the case of small strains the volume

strain presented by the first invariant of the linear strain tensor is piecewise constant if the deformation is
spherically symmetric, and the constants only depend on material parameters (see Morozov et al., 1996;
Nazyrov and Freidin, 1998). In Fig. 5 we have shown how J is distributed in the present case. One can observe
the tendency to piecewise-constant distribution of J, and the character does not depend on R*. One constant is
always equal to JE = (kE)3 and represents the internal phase. The values of J in the outer phase varies between
two fixed values J D ¼ ðkEÞ2kE

1 and J D1
¼ ðkD1

c Þ
3 for all R*. The value J D1

would be the asymptotic value of J if
we were to integrate (3.11) subject to (3.13) beyond R = R* to infinity (see the dashed lines in Fig. 5b). In this
case DD1 can be viewed as showing the strain distribution in R 2 (R*,1) in an equilibrium two-phase infinite
medium subjected to an all-round stretching kD1

c .
As a comparison, we have used dashed lines in Fig. 5a to demonstrate the distribution of J when the inter-

face radius is slightly perturbed from R* = 0.7 with r0 held fixed. The perturbed solutions satisfy all the equi-
librium conditions except the Maxwell relation (to be more precise, the perturbation solution is obtained by



Fig. 4. Two types of two-phase solutions compared with the single-phase solution for the Hadamard material. Solid lines: the first two-
phase solution. Dashed lines: the second two-phase solution. Dotted lines: the one-phase solution.

A.B. Freidin et al. / International Journal of Solids and Structures 43 (2006) 4484–4508 4497
integrating (3.31) subjected again to the initial conditions (3.13) but now k�1; k0 are determined by r(1) = r0

and the traction continuity condition). It is seen that the solutions that do not satisfy the Maxwell relation
vary more significantly.

The distribution of J represents the volume part of the deformation. For completeness’ sake we also show
in Fig. 6 distributions of kU � kR which characterize deviations from a spherical strain state. This quantity is
equal to zero in the internal phase. Its distributions in the outer shell are similar for various equilibrium inter-
faces (Fig. 6a) and may be much more different if the interface radius does not satisfy the Maxwell relation (see
Fig. 6b where the solid line corresponds to the equilibrium two-phase deformation and dashed lines corre-
spond to perturbed interface radii at the same r0).

We now turn to the second solution corresponding to k0 ¼ kA; k�1 ¼ kB
1 . In this case the interface begins to

spread from the outer surface when r0 ¼ rA
0 ¼ kA (Fig. 4a). A thin spherical layer appears with the deformation

corresponding to point B in Fig. 3. The sphere completely transforms into the new phase when r0 ¼ kB4
c .

Deformations in the new phase correspond to the parts of the segment BB4 in Fig. 3 such as BB2 as the inter-
face moves towards the center of the sphere. See also Fig. 2b. At the last moment just before the transforma-
tion is finished the deformations in the body are given by the point A (for the origin) and the segment BB4 (for
the rest of the sphere). As soon as the material at the center is transformed into the new phase, the deformation



(a)

(b)

Fig. 5. Variations of J for various R
*
: (a) in the whole sphere; (b) in the outer layer (the dashed lines show the asymptotic behaviour if

integration of (3.31) is carried out beyond R = 1).
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in the whole sphere becomes uniform again and corresponds to the single point B4. We note that in this sce-
nario point B belongs to the internal PTZ boundary and deformations in some part of the sphere correspond
to points inside the internal boundary of the PTZ. The values of J inside the shell remain between J B ¼ ðkA

0 Þ
2kB

1

and J B4
¼ ðkB4

c Þ
3.

Note the following similarity and difference between points D1 and B4. Both D1 and B4 are bifurcation
points at which a uniform spherical deformation may bifurcate into a corresponding two-phase deformation.
The first two-phase solution exists for rD1

0 < r0 < rE
0 , whereas the second two-phase solution only exists for

rA
0 < r0 < rB4

0 (see Fig. 3). Thus, in the vicinity of point D1 with kD1
c < r0 ¼ k1 ¼ k < rA

0 there are no other
two-phase spherically-symmetric deformations than the one given by the first solution. In the vicinity of B4

with r0 < kB4
c we have both two-phase solutions.

The dependence of the required pressure p = �s1jR=1 on the external radius r0 is shown in Fig. 4b. If the
sphere were deformed uniformly we would have the diagram 0KLM. Thick solid and dashed lines correspond
to the first and second two-phase solutions, respectively. Both solutions demonstrate stress-softening effect on
the loading path.

To decide which solution is robust and is most likely to be observed, we now analyze the energy and sta-
bility associated with the three solutions. Simple numerical calculations show that, given r0, both two-phase
deformations are energetically preferable to the one-phase deformation (Fig. 4c). If the pressure is prescribed
then it can be shown that the potential energy of one of the two one-phase homogeneous states is less than the
energy of the corresponding two-phase deformations.



(a)

(b)

Fig. 6. Variation of kU � kR in the sphere: (a) equilibrium two-phase deformations at various r0; (b) equilibrium (solid) and non-
equilibrium (dashed) two-phase deformations at the same r0 = 1.21 (R

*
= 0.7).
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For both two-phase solutions the energy increases if the interface is perturbed in the vicinity of R* at a given
r0, as shown in Fig. 7 for the first solution. In computing the energy for each perturbed interface the perturbed
deformation field is required to satisfy all the equilibrium and jump conditions except the Maxwell relation. It
is seen that both solutions are stable with respect to spherical perturbations of the interface. In Section 4 we
will show that the second solution is in fact unstable with respect to small wavelength perturbations and, thus,
the bifurcation at point B4 cannot be observed.

We have so far considered two-phase deformations with only one interface. We now show with the aid of
the PTZ that no more interfaces are possible. Indeed, (3.31) was integrated subject to initial conditions at
R = R* where the deformation is represented by points D or B in Fig. 3. The segment DD1 corresponds to
the first solution when the new phase first appears. If another spherical interface at R** > R* were assumed,
Fig. 7. Dependence of the total energy on the interface radius ~R when r0 is fixed; r0 = 1.21, the minimum W is attained at ~R ¼ R� ¼ 0:7.
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deformations for R 2 [R*,R**] would belong to the same line. We would have two spherically symmetric (non-
spherical) deformations which could coexist across the second interface. On the other hand, the deformation
on any interface must belong to the PTZ by definition. But the DD1 has only one common point D with the
PTZ. Thus, another equilibrium interface is not possible. The same argument can be applied to the second
solution. We remark, however, that if the solid sphere is replaced by a hollow sphere, then more than one
interface may be possible; see Eremeyev et al. (2002, 2003, in press) for an analysis in the small-strain
approach.

To illustrate the point that a phase transformation may not take place even if the dependence of the all-
round pressure on the stretch has the usual non-convex form (that is a maximum followed by a minimum),
we have shown in Fig. 8 the PTZ cross-section by the plane k2 = k3 and the dependence of the all-round ten-
sion on k for another set of material parameters. One can conclude directly from an inspection of the PTZ that
this material does not allow spherically symmetric phase transformations since the PTZ does not contain a
(a)

(b)

Fig. 8. The PTZ on the k1k-plane (a), and the dependence of the Cauchy hydrostatic stress s on the all-rounding stretching k (b) for the
Hadamard material with Jc = 1.6, d = 0.3, A = 0.35, c = 0.03, a = �0.624.
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point at which k1 = k. But the corresponding strain energy is a non-convex function of k. This curve, as well as
the tension-stretch curve, looks very similar to that corresponding to Fig. 4.

To conclude this section we note that not every loading path will lead to a phase transformation. We dem-
onstrate this by considering piecewise-homogeneous two-phase deformations. Since the PTZ is constructed
from an analysis of local equilibrium conditions, every point of the PTZ corresponds to a piecewise-homoge-
neous two-phase deformation. One can see that the line ST in Fig. 3 showing the deformation path of a uni-
axial stretching does not intersect the PTZ. This means that piecewise-homogeneous two-phase deformations
cannot appear under uniaxial stretching.

3.3. A model material with W depending on I1 and J

Phase transformations in the Hadamard material are possible if the function /(J) satisfies certain condi-
tions. The loss of ellipticity at some deformation gradients is one of the conditions. In this section we consider
the following material model proposed by Freidin and Chiskis (1994a) and used in the PTZ construction by
Freidin et al. (2002) and Freidin and Vilchevskaya (2002):
W ðI1; JÞ ¼ V ðI1Þ þ UðJÞ; ð3:42Þ

V ðI1Þ ¼
c1I1; I1 2 ð0; IcÞ;
c2ðI1 � IcÞ þ c1Ic; I1 2 ðIc;1Þ;

�
c1 > c2; ð3:43Þ

UðJÞ ¼ aJ 2 þ bJ þ c; ð3:44Þ
where c1, c2, Ic, a, b, c are material constants. The constants b and c are expressed in terms of the others such
that the strain energy and stresses vanish at the undeformed state. Other restrictions follow from an exami-
nation of ellipticity. We take Ic > 3. Then it can be shown that the strong ellipticity condition is satisfied at
the undeformed state if a > c1/3, and that the Poisson’s ratio is positive at the undeformed state if a > c1.
The strain-energy function admits two-phase deformations due to its special dependence on the first strain
invariant. The non-ellipticity area degenerates to a surface I = Ic in the strain space.

Note that the strain-energy function only depends on the first and third strain invariants. As observed in
Freidin and Chiskis (1994a), in this case it follows from (2.17) and (2.18) that
h ¼ � ½W 1�
W þ

1 G1

t�1 . ð3:45Þ
Substituting (3.45) into (2.10) gives (see Freidin et al., 2002)
½I1� ¼ G1½J 2� � ½W
2
1�

W 2
1þ

L�1 ; ð3:46Þ

L1 , G�1
1 t1 � t1 ¼ I1 � J 2G1 � G�1G�1

1 . ð3:47Þ
The traction continuity condition (2.13) and the Maxwell relation (2.14) then reduce to
2G1½JW 1� ¼ �½W 3�; ð3:48Þ

½W � ¼ W �
1 W þ

3 þ W þ
1 W �

3

W �
1 þ W þ

1

½J � þ 2W �
1 W þ

1

W �
1 þ W þ

1

½I1�. ð3:49Þ
The three equations (3.46), (3.48) and (3.49) contain the four unknowns Jþ; Iþ1 ; G1 and G�1. If we solve (3.48)
and (3.49) to obtain
Jþ ¼ JþðG1; J�; I�1 Þ; Iþ1 ¼ Iþ1 ðG�1 ; J�; I�1 Þ; ð3:50Þ

and then substitute (3.50) into (3.46), we obtain an equation which is linear in G�1:
W , W1ðG1; J ; I1Þ þW2ðG1; J ; I1ÞG�1 ¼ 0; ð3:51Þ

where we have removed the superscripts/subscripts ‘‘�’’ since (3.51) is also valid for the ‘‘+’’ phase.
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Eq. (3.51) determines a curve on the (G1, G�1)-plane. Its intersection with the triangular region G in Fig. 1
yields a one-parameter family of orientation invariants. The corresponding values of Iþ1 and J+ are calculated
from (3.50).

Since the function W is linear in G�1, its maximal and minimal values are reached, given ki, on the boundary
of G. If k1 < k2 < k3, then one of these values is reached on the A1A3-side of the triangle G. The corresponding
normal lies in the (1,3)-principal plane of B.

For the specific material model (3.42)–(3.44) the conditions (3.46)–(3.49) reduce to the system of equations:
½I1� ¼ ðJ 2
þ � J 2

�ÞG1 þ ðk2 � 1ÞL1; ð3:52Þ
� AðJþ � J�Þ ¼ ðJþ � kJ�ÞG1; ð3:53Þ
½I1� ¼ ðk þ 1ÞðIc � I�1 Þ � AðJþ � J�Þ2; ð3:54Þ
where
A ¼ a=c2; k ¼ c1=c2.
Solving (3.53) for J+ and substituting the resulting expression into (3.52) and (3.54), we obtain a single equa-
tion for G1 and G�1:
J 2
�G2

1

Aþ G1

þ L�1 ¼
Ic � I�1
k � 1

. ð3:55Þ
The PTZ is determined by the inequalities
min
G1;G�12G

J 2G2
1

Aþ G1

þ L1 6
Ic � I1

k � 1
6 max

G1;G�12G

J 2G2
1

Aþ G1

þ L1; ð3:56Þ
which apply to both ‘‘�’’ and ‘‘+’’ phases.
On the one hand, if W � V, and J � 1, then (3.43) describes the incompressible Treloar material that has

been considered by Freidin and Chiskis (1994b) as the simplest incompressible material model that allows two-
phase deformations (Fig. 9). The ‘‘kink’’ point I = Ic replaces the non-ellipticity sub-zone. For such a material
the interface, corresponding to the PTZ boundary, must necessarily be given by n2

1 ¼ k1=ðk1 þ k3Þ,
n2 ¼ 0; n2

3 ¼ 1� n2
1 (assuming k1 > k2 > k3) and across the interface a shear strain suffers a jump.

On the other hand, the material (3.42) and (3.43) can be considered as a composition of two Hadamard
materials which are identified with different phase states of a single material. However, in contrast to the
Hadamard material considered in the previous subsection, in the current model it is not the U(J) that gives
rise to phase transformations. It can be deduced from (3.56) that two types of interfaces are possible under
the present model (Freidin et al., 2002). In the first case, the normal coincides with the eigenvector of B� cor-
responding to the maximal stretch, contrary to the Hadamard material in which the normal corresponds to the
minimal stretch, and only this stretch suffers a jump. In the other case, the interface is similar to the interface in
the incompressible Treloar material except that the jump is no longer volume-preserving. We refer to these two
types of interfaces as the stretching-type and shearing-type, respectively.
Fig. 9. The kinked function V(I1) for the model material.
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Figs. 10 and 11 show the axially symmetric PTZ cross-sections (by the plane k2 = k3 = k) and the PTZ
cross-section by the plane k2 = 1, respectively. The shaded area represents the interior of the PTZ. We have
divided the PTZ boundaries into thick and thin line segments: the thick line segments give rise to shearing-type
interfaces, whereas the thin line segments correspond to stretching-type interfaces. The dashed lines denote the
internal PTZ boundaries and the dotted lines denote the non-ellipticity surface I = Ic. The lines OM and PN

correspond to the path of uniaxial tension in the 1-direction
Fig. 10
The lin
k2 ¼ k3 ¼ Kðk1Þ; s2 ¼ s3 ¼ 0 ð3:57Þ

(Fig. 10) or ‘‘plane’’ stretching
k2 � 1; k3 ¼ Kðk1Þ; s3 ¼ 0 ð3:58Þ
. Axially symmetric PTZ cross-section for the model material. (a) a = 4.09, c1 = 3, c2 = 1, Ic = 4; (b) a = 4.4, c1 = 3, c2 = 1, Ic = 4.
es OM and NP correspond to the path of uniaxial stretching, and the points A, B, D, E refer to spherically symmetric deformations.



Fig. 11. The PTZ plane section for the model material with k2 = 1, a = 4.09, c1 = 3, c2 = 1.
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(Fig. 11). It is seen that, depending on material parameters, the crossing points M and N may correspond to
either type of interfaces. Even for the same parameters the type of interfaces may be different for uniaxial and
plane stretching, and for plane stretching and other plane deformations. For instance, the point M in Fig. 10b
corresponds to a shearing-type interface and the jump in strains is directed out of the kk1-plane. On the other
hand, point M in Fig. 10a corresponds to the normal n = e1, and in this case the jump is represented by MM 0.

Note that in Figs. 10a and 11 the point N which denotes crossing of the unloading path with the PTZ does
not coincide with point M 0 where the deformation jumps from the point M. Analogously, the points M and N 0

are also different. The explanation is that the lines OM and PN satisfy the conditions (3.57) or (3.58). These
conditions are satisfied at points M and N, but may be violated at points M 0 and N 0 because of stresses
induced by phase transformations. We do not discuss here how the whole material transforms from the branch
OM to the branch PN.

Thus, this model material demonstrates a variety of interfaces for different loading paths. Now we study its
behaviour under all-round stretching.

One can see from Fig. 10 that two spherically symmetric solutions are possible. The jumps in strains are
represented by AB (the first solution) and ED (the second solution). Using the same procedures as in the case
of the Hadamard material one can find the dependence of the equilibrium interface radius on the outer radius
of the sphere, construct the pressure-outer radius relation, examine the energies, and relate the two-phase
deformations to the PTZ. The results are presented in Fig. 12. A thin spherical layer of a new phase can appear
at the outer surface of the sphere when the loading reaches point A. Then the core phase remains to be in a
spherical strain state with k1 ¼ k2 ¼ k3 ¼ kA

0 . The strains in the outer phase are distributed along BB1 at some
intermediate radius of the interface. The transformation finishes at r0 ¼ kB2

c .
The second solution corresponds to the nucleation of a new phase from the center of the sphere when

r0 ¼ kD1
c . Strains are distributed as EDD1, EDD2, etc.

Both solutions are energetically preferable to the one-phase solution, are stable with respect to radial per-
turbation of the interface, and displays strain-softening behaviour.

As in the case of the Hadamard material, we refer to the two-phase solution with lower energy as the first
solution. We note that parameters c1, c2 can be related to the shear modulus of the two phases and that for the
first solution the greater c1 is associated with the core phase. For the chosen material parameters, contrary to
the Hadamard material, the first solution corresponds to the nucleation of a new phase from the outer surface
of the sphere. Similar to the Hadamard material, strains throughout the sphere are outside the PTZ in the case
of the first solution and at least some of the strains are inside the external PTZ boundary for the second



Fig. 12. Two-phase solutions compared with the one-phase solution for the model material.
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solution. In the next section it is shown that as in the case of a Hadamard material the second solution is
unstable with respect to small wavelength perturbations.

4. Further stability considerations

In the previous section we have considered the stability of the two-phase deformations with respect to
spherical perturbations of the interface in the undeformed configuration. In this section, we consider stability
with respect to certain small-wavelength perturbations and check whether a necessary stability condition is
satisfied or not for the solutions obtained.

It is known (Gurtin, 1983) that if a two-phase inhomogeneous deformation is a local energy minimizer, then
given any point p0 of the interface, the piecewise-homogeneous deformation corresponding to the two values
F±(p0) is also an energy minimizer. Thus, instability of the latter state would imply instability of the former
state.
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For the present problem, the pairwise-homogeneous deformation field corresponding to F±(p0) is given by
F ¼
F� ¼ diag k0; k0; k0f g; for 0 < e1 � X <1;
Fþ ¼ diag k�1; k0; k0

	 

; for �1 < e1 � X < 0.

�
ð4:1Þ
From our discussions in the two previous sections, there are two sets of solutions for k0 and k�1 for each mate-
rial model. According to Fu and Freidin (2004), the stability of such a pairwise-homogeneous deformation,
with respect to perturbations that are sinusoidal in the e2-direction and localized near the interface, is deter-
mined by the signs of the eigenvalues of the Hermitian matrix H defined by
H ¼
P g

ĝT �f �M��f

� �
; ð4:2Þ
where
P ¼ M̂
þ þM�; ð4:3Þ

g ¼ M��f � ib; �f ¼ sFte1; b ¼ sJTF�Tte2. ð4:4Þ
In the above expressions, M+ and M� are the surface impedance matrices associated with F+ and F�, respec-
tively, and a hat on M+ signifies complex conjugation. Explicit formulae for M+ and M� are given in Fu and
Freidin (2004) and Fu and Brookes (in press) in terms of the elastic moduli.

The pairwise-homogeneous deformation is unstable if at least one of the eigenvalues of H is negative, and is
stable if all the eigenvalues of H are positive. The P defined by (4.3) is referred to as the interfacial impedance
tensor. Its positive definiteness assures stability of the corresponding joint-problem (that is the problem when
the interface in the reference configuration is fixed and is not allowed to vary). It is seen that the positive def-
initeness of P is a necessary condition for H to be positive definite. Assuming that P is positive definite, Fu and
Freidin (2004) showed that H is positive definite if and only if
L , �f �M��f � ĝ � P�1g > 0; ð4:5Þ

which is a stability criterion based on kinetic considerations (Eremeyev et al., 2002, 2003). This criterion has
the following physical interpretation. If (4.5) is satisfied, energy will be dissipated as the interface is perturbed
and the perturbation will eventually die out. If, on the other hand, (4.5) is violated, energy will actually be
created as the interface is perturbed, which would lead to further growth of the interface.

Our numerical calculations according to the above recipe show that for both materials the second solution,
in which part of the deformations are inside the external PTZ boundaries, is unstable, whereas instability of
the other solution, in which the deformations throughout the sphere except those at the interface are outside of
the PTZ, is not observed.

5. Conclusions

In the present paper we studied some features of spherically symmetric two-phase deformations within the
framework of phase transition zones, using a solid sphere subjected to an all-round tension as an illustrative
example. We showed that inclusion of the Maxwell relation leads to a free-boundary problem. Since the con-
ditions at the interface only depend on the material parameters, we have used a semi-inverse approach: assume
the location of the interface and then determine the required boundary conditions. We showed that all equi-
librium spherically symmetric two-phase deformations can be presented on a single curve determined by prop-
erties of the strain energy function, and described some general properties of the solution.

We considered two different nonlinear elastic materials in order to demonstrate a variety of phase transfor-
mation behaviours as well as some common features. For each material we showed that there were two solu-
tions corresponding to phase transformations, that in each solution there could be only one interface, and that
both two-phase deformations were energetically preferable to the one-phase deformation when radial dis-
placement is prescribed at the external surface. Both solutions were stable with respect to perturbations of
the interface radius.
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We constructed phase transition zones for both materials and studied the relation between various two-
phase deformations and the PTZ. In doing so we identified two kinds of deformation fields: deformation fields
that are entirely outside or on the external PTZ boundary and deformation fields some parts of which are
inside the internal and thus inside the external PTZ boundary. We found that deformation fields of the second
kind were unstable. Although we did not find instability for deformation fields of the first kind, the question
concerning the relationship between the PTZ and stability remains open. In this context we refer to the recent
paper by Šilhavy (2004) where the phase transition zone is related to the notion of the quasiconvex hull of the
strain energy function.

We have demonstrated the usefulness of the PTZ in characterizing the interface and the associated two-
phase deformations that can appear under various loading conditions.
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